2017 Reacción de c loruro de cinamoilo con amoniaco para formar la amida

$$C_9H_7CIO$$
 C_9H_9NO (166.6) (17.0) (147.2)

Clasificación

Tipos de reacción y clases de productos

reacción del grupo carbonilo en derivados de ácido carboxílico amida, cloruro de ácido

Métodos o técnicas de trabajo

agitación con barra de agitación magnética, adición gota a gota con embudo de adición, agitación, extracción, evaporación con rotavapor, recristalización, filtración, uso de baño refrigerante de hielo

Instrucciones (escala 100 mmol)

Equipo

Matraz de tres bocas de 250 mL, refrigerante de reflujo, embudo de adición sin presión compensada, agitador magnético, barra de agitación magnética, embudo de separación de 500 mL, rotavapor, baño de hielo, bomba de vacío

Productos

Cloruro del ácido *trans*-cináamico (pf 32-35°C, peb 251-258 °C;destilado; producto del experimento 2013)

disolución acuosa concentrada de amoniaco (25%)

tert-butil metil eter (peb 55 °C)

acetato de etilo (p eb 77 °C)

sulfato sódico para secar

16,6 g (100 mmol)

80 mL (70 g, 1,0 mol)

140 mL

unos 5 g

Reacción

Se introducen 80 mL de disolución acuosa concentrada de amoniaco en un matraz de tres bocas de 250 mL eaquipado con refrigerante de reflujo, barra de agitación magnética y embudo de adición sin presión compensada. Se enfría el matraz de reacción en un baño de hielo. Se transfiere al embudo de adición una disolución de 16,6 g (100 mmol) de cloruro del ácido *trans*-cinámico en 80 mL de *tert*-butil metil eter y se adicionan con agitación (durante

1

unos 30 minutos) evitando así una reacción demasiado fuerte. Se mantiene la agitación durante otros 30 min a temperatura ambiente. Precipita un sólido fino blanco, que no se aisla.

Elaboración

Se transfiere el contenido del matraz de reacción a un embudo de separación de 500 mL. El matraz se lava primero con unos 50 mL de agua y luego con 50 mL de acetato de etilo. Estas disoluciones de lavado también se añaden al embudo de separación. Se agita vigorosamente el embudo, y se separan las fases. La fase acuosa se agita tres veces con 30 mL de acetato de etilo cada una y se guardan.

Las fases orgánicas combinadas se secan sobre sulfato sódico, se filtra el agente desecante y el disolvente se evapora en el rotavapor. La amida del ácido cinámico queda como un sólido blanco, que se seca a vacío ligero hasta peso constante.

Rendimiento: 12,0 g (81,5 mmol, 82%); pf 146-148 °C; pureza por HPLC mayor del 99%

El producto puede recristalizarse de agua, después debe secarse concienzudamente a vacío ligero, hasata eliminar toda el agua (peso constante).

Rendimiento: 10,8 g (73,4 mmol, 73%); pf 147-148 °C. Los espectros y el HPLC no difieren de los del producto no recristalizado.

La fase acuosa puede acidularse, y agitarse a continuación dos veces con 50 mL de acetato de etilo cada una. Una vez secada la fase orgánica con sulfato sódico, y evaporado el disolvente en el rotavapor, se obtienen como resíduo unos 200 mg de un sólido blanco. Está formado por un 80% de la amida y un 20% de ácido cinámico (ver analíticas). La fase acuosa no contiene productos que puedan detectarse en las condiciones de HPLC descritas. Después de evaporar el agua en el rotavapor se obtiene un sólido blanco, constituido mayoritariamente por cloruro amónico.

Comentarios

Si en la reacción se emplea el cloruro del ácido cinámico bruto y sin destilar, (13,5 g, ver experimento 2013), se aisla la amida del ácido cinámico (sin recristalizar) con un rendimiento de 9,65 g (65,6 mmol, 66% con relación al ácido cinámico usado (14,8 g, 100 mmol)).

Cuando se añade el cloruro del ácido cinámico a la disolución concentrada de amoniaco, no se puede usar un embudo de adición de presión compensada ya que los vapores de amoniaco podrían ascender y pasar a la disolución del cloruro de ácido, reaccionando allí para formar la amida, que precipita y atasca el embudo de adición. La disolución del cloruro de ácido también puede añadirse a través de un septum utilizando una jeringuilla.

Manejo de resíduos

Eliminación de resíduos

Resíduo	Eliminación	
mezcla de disolventes destilados	disolventes orgánicos, libres de halógenos	
fase acuosa	mezclas de disoluciones acuosas, conteniendo halógenos	
sulfato sódico	resíduos sólidos, libres de mercurio	

aguas madres	mezclas	de	disoluciones	acuosas,	libres	de
	halógenos	S				

Tiempo

Unas 2 horas sin recristalización

Pausa

Antes y después de la agitación

Grado de dificultad

Fácil

Instrucciones (escala 10 mmol)

Equipo

Matraz de tres bocas de 100 mL, refrigerante de reflujo, embudo de adición sin presión compensada, agitador magnético, barra de agitación magnética, embudo de separación de 100 mL, rotavapor, baño de hielo, bomba de vacío

Productos

Cloruro del ácido <i>trans</i> -cináamico (pf 32-35°C, p eb 251-258 °C;destilado; producto del experimento 2013)	1,66 g (10,0 mmol)
disolución acuosa concentrada de amoniaco (25%)	10 mL (8,7 g, 125 mmol)
tert-butil metil eter (peb 55 °C)	10 mL
acetato de etilo (p eb 77 °C)	40 mL
sulfato sódico para secar	aprox. 1 g

Reacción

Se introducen 10 mL de disolución acuosa concentrada de amoniaco en un matraz de tres bocas de 100 mL eaquipado con refrigerante de reflujo, barra de agitación magnética y embudo de adición sin presión compensada. Se enfría el matraz de reacción en un baño de hielo. Se transfiere al embudo de adición una disolución de 1,66 g (10,0 mmol) de cloruro del ácido *trans*-cinámico en 10 mL de *tert*-butil metil eter y se adicionan con agitación (durante unos 15 minutos) evitando así una reacción demasiado fuerte. Se mantiene la agitación durante otros 30 min a temperatura ambiente. Precipita un sólido fino blanco, que no se aisla.

Elaboración

Se transfiere el contenido del matraz de reacción a un embudo de separación de 100 mL. El matraz se lava primero con unos 10 mL de agua y luego con 10 mL de acetato de etilo. Estas disoluciones de lavado también se añaden al embudo de separación. Se agita vigorosamente el embudo, y se separan las fases. La fase acuosa se agita tres veces con 10 mL de acetato de etilo cada una y se guardan.

Las fases orgánicas combinadas se secan sobre sulfato sódico, se filtra el agente desecante y el disolvente se evapora en el rotavapor. La amida del ácido cinámico queda como un sólido blanco, que se seca a vacío ligero hasta peso constante.

3

Rendimiento: 1,15 g (7,81 mmol, 78%); pf 146-148 °C; pureza por HPLC mayor del 99%

El producto puede recristalizarse de agua, después debe secarse concienzudamente a vacío ligero, hasata eliminar toda el agua (peso constante).

Rendimiento: 900 mg (6,12 mmol, 61%); pf 147-148 °C. Los espectros y el HPLC no difieren de los del producto no recristalizado.

Comentarios

Si en la reacción se emplea el cloruro del ácido cinámico bruto y sin destilar, (1,4 g, ver experimento 2013), se aisla la amida del ácido cinámico (sin recristalizar) con un rendimiento de 1,05 g (7,14 mmol, 71% con relación al ácido cinámico usado (1,4 g, 10 mmol)).

Cuando se añade el cloruro del ácido cinámico a la disolución concentrada de amoniaco, no se puede usar un embudo de adición de presión compensada ya que los vapores de amoniaco podrían ascender y pasar a la disolución del cloruro de ácido, reaccionando allí para formar la amida, que precipita y atasca el embudo de adición. La disolución del cloruro de ácido también puede añadirse a través de un septum utilizando una jeringuilla.

Manejo de resíduos

Eliminación de resíduos

Resíduo	Eliminación
mezcla de disolventes destilados	disolventes orgánicos, libres de halógenos
fase acuosa	mezclas de disoluciones acuosas, conteniendo
	halógenos
sulfato sódico	resíduos sólidos, libres de mercurio
aguas madres	mezclas de disoluciones acuosas, libres de
	halógenos

Tiempo

Unas 1,5 horas sin recristalización

Pausa

Antes y después de la agitación

Grado de dificultad

Fácil

Analíticas

HPLC

Preparación de la muestra: se disuelven 0,1 mg de compuesto en 1 mL de acetonitrilo.

Condiciones de HPLC:

columna: Phenomenex Luna C18; tamaño 3 μm, longitud 150 mm, diámetro interno 4,6 mm

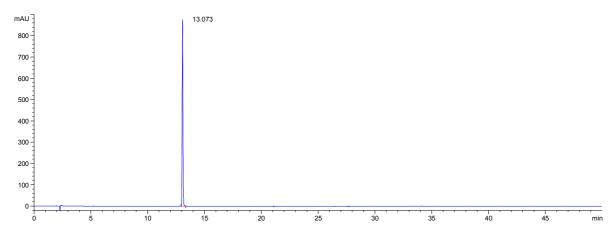
temperatura de 25 °C

columna

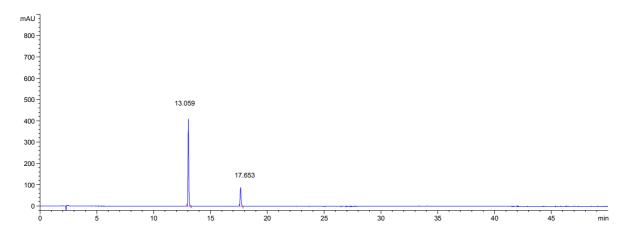
volumen de $5,0 \mu L$

inyección

gradiente: 0 min 5% acetonitrilo + 95% agua (+ 0.0059% ácido trifluoracético)

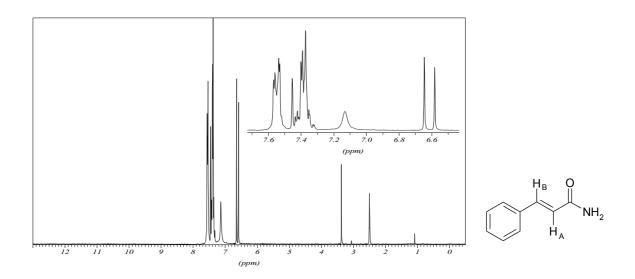

40 min 95% acetonitrilo + 5% agua (+ 0.0059% ácido trifluoracético)

50 min 95% acetonitrilo + 5% agua (+ 0.0059% ácido trifluoracético)


flujo: 1,0 mL/min longitud de onda: 220 nm

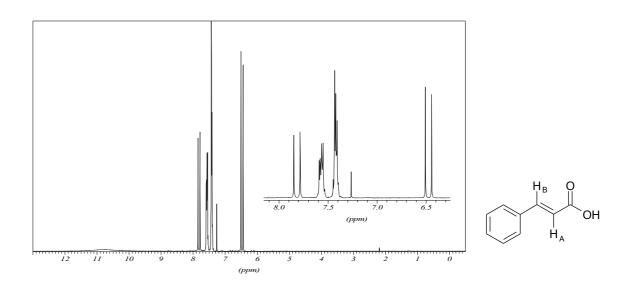
El porcentaje de concentración se calculó a partir del área de los picos.

HPLC I del producto antes de recristalizar


HPLC II del extracto de la fase acuosa acidulada

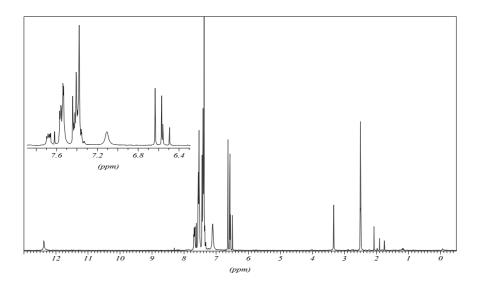
Tiempo de retención	de retención Area del pico %		el pico %
(min)	Producto	HPLC I	HPLC II
13,1	amida del ácido cinámico	100	80
17,7	ácido cinámico		20

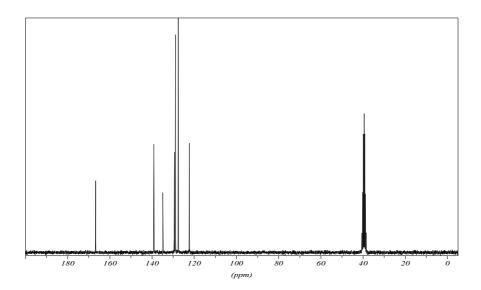
5


Espectro ¹H NMR del producto puro (250 MHz, DMSO-D₆)

δ (ppm)	Multiplicidad	Constante de acoplamiento (Hz)	Número de H	Asignación
6,61	d	$J_{AB} = 15,9$	1	H_{A}
7,13	s anchp		1	NH (sólo uno)
7,2-7,6	m		7	NH + CH aromático +H _B
dentro del multiplete:				
7,42	d	$J_{AB} = 15,9$	1 de 7	H_B

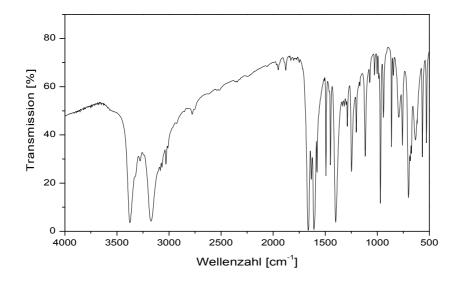
Las señales a < 4 ppm pertenecen al DMSO, agua y *tert*-butil metil eter.


Espectro ¹H NMR del ácido cinámico (250 MHz, CDCl₃) (para comparación)


δ (ppm)	Multiplicidad	Constante de acoplamiento (Hz)	Número de H	Asignación
6,48	d	$J_{AB} = 16,0$	1	H_{A}
7,35 – 7,65	m		5	CH areno
7,82	d	$J_{AB} = 16,0$	1	H_{B}
10.8	s ancho		1	ОН

Espectro ¹H NMR del extracto de la fase acuosa acidulada

(mezcla de amida del ácido cinámico y de ácido cinámico) (250 MHz, DMSO-D₆)



Espectro ¹³C NMR del producto puro (cinnamic acid amide) (250 MHz, DMSO-D₆)

δ (ppm)	Asignación
122,31	= CH $-$ CONH ₂
127,52	CH areno
128,90	CH areno
129,42	CH areno
134,86	C _{cuat} areno
139,16	$-CH = CH - CONH_2$
166,68	- CONH ₂
38,5-40,5	disolvente

Espectro IR del producto puro (KBr)

(cm ⁻¹)	Asignación
3375, 3175	tensión N – H
3084	tensión = C - H,
1665	tensión C = O, amida
1634	
1610	tensión C = C, alqueno
1580, 1495	tensión C = C, areno
1450	