# 3021 Oxidación de antraceno a antraquinona

#### Literatura

Tse-Lok Ho et al., Synthesis 1973, 206.

### Clasificación

## Tipos de reacción y clases de productos

oxidación

aromáticos, quinona

## Métodos o técnicas de trabajo

agitación con barra de agitación magnética, evaporación con rotavapor, filtración, recristalización

## **Instrucciones (escala 10 mmol)**

## **Equipo**

matraz de fondo redondo de 250 mL, agitador magnético con barra de agitación magnética, rotavapor, matraz Kitasato, embudo Büchner, desecador

### **Productos**

| antraceno (pf 215-217 °C)             | 1,78 g (10,0 mmol) |
|---------------------------------------|--------------------|
| nitrato de amonio y cerio(IV)         | 21,9 g (40,0 mmol) |
| tetrahidrofurano (p eb 66 °C)         | 65 mL              |
| agua                                  | 170 mL             |
| ácido acético (99-100%) (p eb 118 °C) | 150 mL             |

### Reacción

En un matraz de fondo redondo de 250 mL se introducen 1,78 g (10,0 mmol) de antraceno y 65 mL de tetrahidrofurano y se añaden 20 mL de agua mientras se agita la mezcla. Se forma una suspensión blanca a la que se añaden 21,9 g (40,0 mmol) de nitrato de amonio y cerio(IV), continuando la agitación durante 5 minutos más.

#### Elaboración

El disolvente se evapora hasta 15 mL en el rotavapor a 25 hPa. El resíduo del matraz está formado por una fase acuosa y un sólido. La fase sólida se decanta o se filtra el sólido. Para eliminar cualquier compuesto soluble en agua, se introduce el sólido en un matraz Erlenmeyer o en uno de fondo redondo y se lava concienzudamente con 150 mL de agua antes de filtrarlo. Se seca el sólido en un matraz de fondo reedondo en el rotavapor a 20 hPa y con el baño de agua a 50 °C, o en un desecador a vacío. Rendimiento bruto: 2,07 g; pureza según GC 96%

El producto bruto se recristaliza de 100 mL de ácido acético (99-100%).

Rendimiento: 1,69 g (8,12 mmol, 81%); agujas amarillas; pf 284 °C; pureza según GC 100%

Después de evaporar el disolvente de las aguas madres, puede recristalizarse el resíduo de 50 mL de ácido acético.

Rendimiento: 179 mg (0,86 mmol, 8.6%); pureza según GC 100%

Rendimiento total: 1,86 g (8,98 mmol, 90%)

#### **Comentarios**

No es necesario secar el producto bruto antes de la recristalización, si no es necesario calcular el rendimiento de producto bruto.

## Manejo de resíduos

### Eliminación de resíduos

| Resíduo                                      | Eliminación                               |  |
|----------------------------------------------|-------------------------------------------|--|
| mezcla evaporada de tetrahidrofurano y agua  | mezcla de disoluciones acuosas, libres de |  |
|                                              | halógenos                                 |  |
| filtrado acuoso del aislamiento del producto | mezcla de disoluciones acuosas, libres de |  |
| bruto                                        | halógenos,                                |  |
|                                              | conteniendo metales pesados               |  |
| aguas madres de la recristalización          | neutralizar con NaOH, luego:              |  |
|                                              | mezcla de disoluciones acuosas, libres de |  |
|                                              | halógenos                                 |  |

### **Tiempo**

1 hora

#### Pausa

Después de la evaporación del disolvente en el rotavapor

#### Grado de dificultad

Fácil

## **Instrucciones (escala 2 mmol)**

## **Equipo**

matraz de fondo redondo de 50 mL, agitador magnético con barra de agitación magnética, rotavapor, matraz Kitasato, embudo Büchner, desecador

#### **Productos**

| antraceno (pf 215-217 °C)             | 356 mg (2,00 mmol) |
|---------------------------------------|--------------------|
| nitrato de amonio y cerio(IV)         | 4,39 g (8,00 mmol) |
| tetrahidrofurano (p eb 66 °C)         | 13 mL              |
| agua                                  | 34 mL              |
| ácido acético (99-100%) (p eb 118 °C) | 30 mL              |

#### Reacción

En un matraz de fondo redondo de 50 mL se introducen 356 mg (2,00 mmol) de antraceno y 13 mL de tetrahidrofurano y se añaden 4 mL de agua mientras se agita la mezcla. Se forma una suspensión blanca a la que se añaden 4,39 g (8,00 mmol) de nitrato de amonio y cerio(IV), continuando la agitación durante 5 minutos más.

#### Elaboración

El disolvente se evapora hasta unos 3 mL en el rotavapor a 25 hPa. El resíduo del matraz está formado por una fase acuosa y un sólido. La fase sólida se decanta o se filtra el sólido. Para eliminar cualquier compuesto soluble en agua, se introduce el sólido en un matraz Erlenmeyer o en uno de fondo redondo y se lava concienzudamente con 30 mL de agua antes de filtrarlo. Se seca el sólido en un matraz de fondo reedondo en el rotavapor a 20 hPa y con el baño de agua a 50 °C, o en un desecador a vacío. Rendimiento bruto: 414 mg; pureza según GC 96%

El producto bruto se recristaliza de 20 mL de ácido acético (99-100%).

Rendimiento: 339 mg (1,63 mmol, 81%); agujas amarillas; pf 284 °C; pureza según GC 100%

Después de evaporar el disolvente de las aguas madres, puede recristalizarse el resíduo de 10 mL de ácido acético.

Rendimiento: 30 mg (0,14 mmol, 7%); pureza según GC 100%

Rendimiento total: 369 mg (1,77 mmol, 88%)

#### **Comentarios**

No es necesario secar el producto bruto antes de la recristalización, si no es necesario calcular el rendimiento de producto bruto.

### Manejo de resíduos

#### Eliminación de resíduos

| Resíduo                                      | Eliminación                               |
|----------------------------------------------|-------------------------------------------|
| mezcla evaporada de tetrahidrofurano y agua  | mezcla de disoluciones acuosas, libres de |
|                                              | halógenos                                 |
| filtrado acuoso del aislamiento del producto | mezcla de disoluciones acuosas, libres de |
| bruto                                        | halógenos,                                |
|                                              | conteniendo metales pesados               |
| aguas madres de la recristalización          | neutralizar con NaOH, luego:              |
|                                              | mezcla de disoluciones acuosas, libres de |
|                                              | halógenos                                 |

## Tiempo

1 hora

## Pausa

Después de la evaporación del disolvente en el rotavapor

## Grado de dificultad

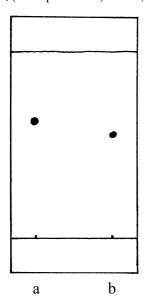
Fácil

## Analíticas

## Monitorización de la reacción con TLC

Preparación de muestras:

Mezcla de reacción: Se diluyen cuatro gotas de la mezcla de reacción con 1 mL de *tert*-butilmetileter y se extraen con 0,5 mL de agua. Se aplica la fase orgánica.


Sólido: Se disuelven unos pocos cristales del sólido en 1 mL de tert-butilmetileter y se aplica la disolución.

#### Condiciones de TLC:

adsorbente: Placas de aluminio para TLC Merck gel de sílice 60 F<sub>254</sub>, 5 x 10 cm

eluyente: acetato de etilo/ciclohexano 50:50

 $R_f$  (antraceno **a**) 0,62  $R_f$  (antraquinona **b**) 0,55



## Monitorización de la reacción con

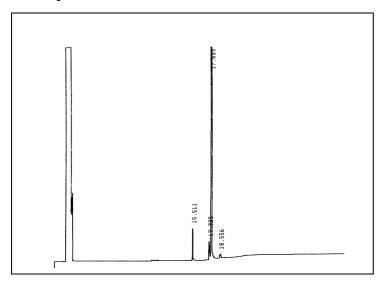
Preparación de muestras:

Se diluyen cuatro gotas de la mezcla de reacción con 1 mL de tert-butilmetileter y se extraen con 0,5 mL de agua. Se inyectan 2  $\mu$ L de la fase orgánica.

Se disuelven unos pocos cristales del sólido en 1 mL de tert-butilmetileter y se aplican 2 μL de la disolución.

#### Condiciones de GC:

columna: Macherey y Nagel, SE-54, L=25 m, d=0,32 mm, capa=0,25 μm inyección: inyector 250 °C, inyección partida 1:20, volumen inyectado 2 μL

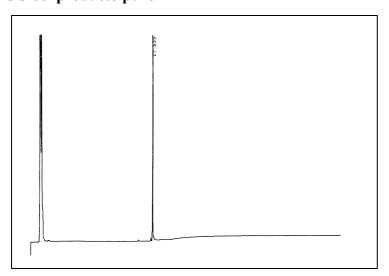

gas portador: N<sub>2</sub>, presión precolumna 62 kPa

horno: 100 °C (1 min), 10 °C/min 250 °C (30 min)

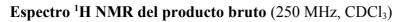
detector: FID, 275 °C

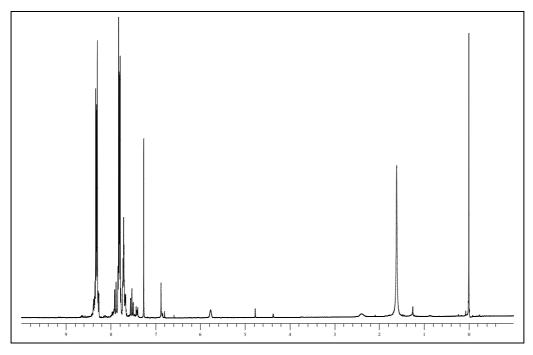
El porcentaje de concentración se calculó a partir del área de los picos

# GC del producto bruto

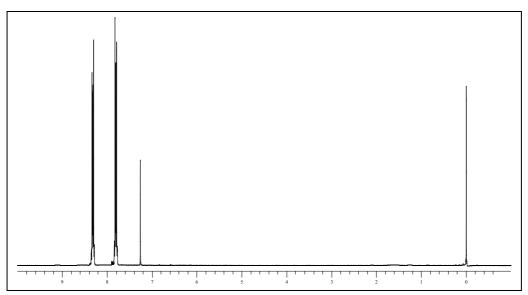



| Tiempo de retención | Producto                                                 | Area del pico % |
|---------------------|----------------------------------------------------------|-----------------|
| (min)               |                                                          |                 |
| 17,6                | producto (antraquinona)                                  | 96,4            |
| 15,5                | reactivo (antraceno) (GC/MS) 2,1                         |                 |
| 17,3                | subproducto (antrona) (GC/MS) <sup>3</sup>               | 1,1             |
| 18,6                | subproducto (2-hidroxiantraquinona) (GC/MS) <sup>4</sup> | 0,4             |


<sup>3</sup> m/e: 195, 194 (100, M<sup>+</sup>), 193, 166, 164, 163, 82.

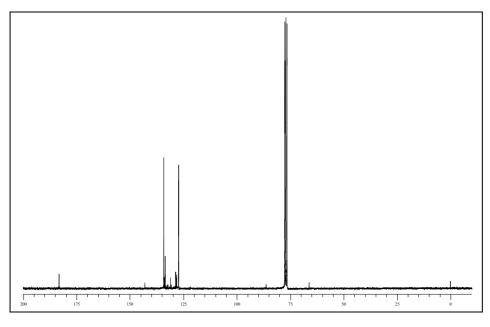

<sup>4</sup> m/e: 224 (M<sup>+</sup>), 223, 196, 168, 139, 84, 76.

# GC del producto puro

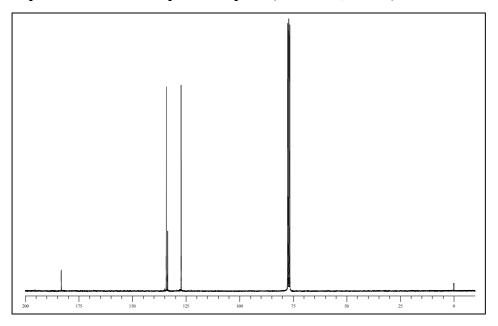



| Tiempo de retención | Producto                | Area del pico % |
|---------------------|-------------------------|-----------------|
| (min)               |                         |                 |
| 17,6                | producto (antraquinona) | 100             |



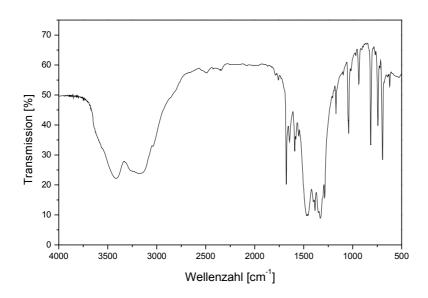



# Espectro <sup>1</sup>H NMR del producto puro (250 MHz, CDCl<sub>3</sub>)

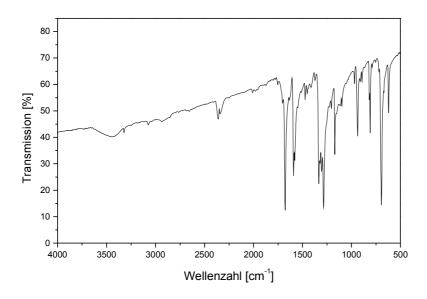



| δ (ppm) | Multiplicidad | Número de H | Asignación |
|---------|---------------|-------------|------------|
| 7,81    | m (AA')       | 4           | 2-H        |
| 8,32    | m (BB')       | 4           | 4-H        |
| 7,26    |               |             | disolvente |

Espectro <sup>13</sup>C NMR del producto bruto (62.5 MHz, CDCl<sub>3</sub>)




Espectro <sup>13</sup>C NMR del producto puro (62.5 MHz, CDCl<sub>3</sub>)




| δ (ppm)   | Asignación |
|-----------|------------|
| 127,2     | C-4        |
| 133,5     | C-3        |
| 134,1     | C-2        |
| 183,1     | C-1        |
| 76.5-77.5 | disolvente |

# Espectro IR del producto bruto (KBr)



## Espectro IR del producto puro (KBr)



| (cm <sup>-1</sup> ) | Asignación              |
|---------------------|-------------------------|
| 1680                | tensión $C = O$         |
| 1590                | tensión $C = C$ , areno |